GCSE Foundation (5 – 1)

fluidmaths.co.uk

Mathematical Reasoning Questions

(Inequalities) – Set 1

Solutions

The questions are repeated here for your convenience

- Here is a set of numbers $\{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$ How many members of the set will satisfy the inequality
 - $-7 \le 2x \le 4$. Where x is and integer.

Solution

- $-7 \le 2x \le 4$ {Divide through the inequality by 2}
- $-3.5 \le x \le 2$

Therefore, x is greater or equal to -3.5 but less than or equal to 2 Therefore, for the numbers in the given set,

only $\{-3, -2, -1, 0, 1, 2\}$ will satisfy the inequality.

Since *x* is an integer, it means that it cannot take any decimal values.

Hence, five members from the set will satisfy the given inequality [2marks]

2 Which inequality is represented on the number line below?

Choose one answer

- a) $-4 \le 2x \le 10$
- b) $-2 \le 2x \le 5$
- c) -4 < 2x < 10
- d) $-4 < 2x \le 10$

Solution

The diagram represents the numbers between the numbers -2 and 5, and the circle over 5 is filled in, so this means it can be equal to 5 but not -2.

So, the inequality from the number line will be $-2 < x \le 5$. We need to double the whole inequality since all the answers are given in terms of 2x.

$$-2 < x \le 5 = -4 < 2x \le 10$$

Correct Answer: D

[2marks]

3 Given that $-5 < x \le 2$ and y < 10

List all the numbers which could represent both x and y

Solution

The highest value of x is 2 and its lowest value is -4

The highest value of y will be 9 since y is less than 10

Therefore, the numbers which could represent both x and y will be

$$\{-4, -3, -2, -1, 0, 1, 2\}$$

[2marks]

- 4 Answer **True** or **False** for the following statements
 - a) If $-6 \le \frac{x}{2} \le 1$, then x must be greater than -12 but less than 1
 - b) If x > 7 and y < -1, then x and y do not have a common value
 - c) If $-2x \le 12$, then x must be less than -6

Solution

- a) From $-6 \le \frac{x}{2} \le 1$ multiply through by 2. So, we can have, $-12 \le x \le 2$. Therefore, **False [1mark]**
- b) A number cannot be greater than 7 and be less than -1. Therefore, **True** [1mark]

$$c) x \ge -6$$

 $-2x \le 12$ {Divide both sides by -2}

 $x \ge -6$. x must be greater than -6. Therefore, False [1mark]

{Note that, since we have divided by a negative number, we also need to 'flip' the inequality sign}

5 Choose all the integers which do **not** satisfy the inequality

$$-5 < x + 3 \le 6$$

- a) -9
- b) 7
- c) 8
- d) 3

Solution

 $-5 < x + 3 \le 6$ {Subtract 3 from both sides of the inequality}

 $-8 < x \le 3$ {Numbers which do not satisfy the inequality are numbers less or equal to 3 but greater than -8}

Therefore, we have $\{-9, -8\}$ which do not satisfy the inequality.

Correct Answers: A and C

[2marks]

If $-2 \le x \le 1$ and y < -1, what is the maximum value of x + y? Choose one answer

- a) 1
- b) -2
- c) 1
- d) 2

Solution

The maximum value of x + y is the maximum value of x plus the maximum value of y

The maximum value of x is 1, and the maximum value of y is -2. So, the maximum value of x + y will be 1 + (-2) = -1

Correct Answer: C [2marks]

7

Choose all the numbers which obey the inequality

$$6a + 5 \ge 4a - 15$$

- a) -11
- b) 8
- c) 12
- d) 9

Solution

$$6a + 5 \ge 4a - 15$$

{Subtract 4a from both sides then subtract 5 from both sides}

 $2a \ge -20$ {Divide both sides by 2}

 $a \ge -10$ {a is greater than or equal to -10}

Correct Answers: B and D

[2marks]

8

Find the largest and smallest integers which satisfy the inequality

Solution

 $-18 \le 4x + 5 \le 60$ {subtract 5 from all sides}

 $-23 \le 4x \le 55$ {divide both sides by 4}

 $-5.75 \le x \le 13.75$

The largest integer that satisfies the inequality is 13, and the smallest is -5

[4marks]

9

If
$$y = 2$$
 and $2y < 15 - 2x$

Which of the following is the least integer value of x

- a) -5.5
- b) 5
- c) 5
- d) 5.5

Solution

Substitute y = 2 into 2y < 15 - 2x

4 < 15 - 2x {add 2x to both sides and subtract 4 from both} 2x < 11 {divide by 2}

x < 5.5

Therefore, the largest integer value of x is 5

Correct Answer: B

[2marks]

10

Use the number line below to show all the acceptable values of the inequality $2x^2 \ge 50$

 $2x^2 \ge 50$ {divide both sides by 2} $x^2 \ge 25$ {square root both sides}

$$x \ge 5$$
 or $x \le -5$

[4marks]